Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Infect Genet Evol ; 120: 105589, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38548211

RESUMEN

BACKGROUND: Progress in lymphatic filariasis (LF) elimination is spatially heterogeneous in many endemic countries, which may lead to resurgence in areas that have achieved elimination. Understanding the drivers and consequences of such heterogeneity could help inform strategies to reach global LF elimination goals by 2030. This study assesses whether differences in age-specific compliance with mass drug administration (MDA) could explain LF prevalence patterns in southeastern Madagascar and explores how spatial heterogeneity in prevalence and age-specific MDA compliance may affect the risk of LF resurgence after transmission interruption. METHODOLOGY: We used LYMFASIM model with parameters in line with the context of southeastern Madagascar and explored a wide range of scenarios with different MDA compliance for adults and children (40-100%) to estimate the proportion of elimination, non-elimination and resurgence events associated with each scenario. Finally, we evaluated the risk of resurgence associated with different levels of migration (2-6%) from surrounding districts combined with varying levels of LF microfilaria (mf) prevalence (0-24%) during that same study period. RESULTS: Differences in MDA compliance between adults and children better explained the observed heterogeneity in LF prevalence for these age groups than differences in exposure alone. The risk of resurgence associated with differences in MDA compliance scenarios ranged from 0 to 19% and was highest when compliance was high for children (e.g. 90%) and low for adults (e.g. 50%). The risk of resurgence associated with migration was generally higher, exceeding 60% risk for all the migration levels explored (2-6% per year) when mf prevalence in the source districts was between 9% and 20%. CONCLUSION: Gaps in the implementation of LF elimination programme can increase the risk of resurgence and undermine elimination efforts. In Madagascar, districts that have not attained elimination pose a significant risk for those that have achieved it. More research is needed to help guide LF elimination programme on the optimal strategies for surveillance and control that maximize the chances to sustain elimination and avoid resurgence.


Asunto(s)
Erradicación de la Enfermedad , Filariasis Linfática , Administración Masiva de Medicamentos , Humanos , Madagascar/epidemiología , Filariasis Linfática/epidemiología , Filariasis Linfática/prevención & control , Adulto , Niño , Adolescente , Prevalencia , Erradicación de la Enfermedad/métodos , Preescolar , Femenino , Adulto Joven , Masculino , Persona de Mediana Edad , Filaricidas/uso terapéutico , Animales
2.
BMJ Glob Health ; 7(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35012969

RESUMEN

BACKGROUND: To reach global immunisation goals, national programmes need to balance routine immunisation at health facilities with vaccination campaigns and other outreach activities (eg, vaccination weeks), which boost coverage at particular times and help reduce geographical inequalities. However, where routine immunisation is weak, an over-reliance on vaccination campaigns may lead to heterogeneous coverage. Here, we assessed the impact of a health system strengthening (HSS) intervention on the relative contribution of routine immunisation and outreach activities to reach immunisation goals in rural Madagascar. METHODS: We obtained data from health centres in Ifanadiana district on the monthly number of recommended vaccines (BCG, measles, diphtheria, tetanus and pertussis (DTP) and polio) delivered to children, during 2014-2018. We also analysed data from a district-representative cohort carried out every 2 years in over 1500 households in 2014-2018. We compared changes inside and outside the HSS catchment in the delivery of recommended vaccines, population-level vaccination coverage, geographical and economic inequalities in coverage, and timeliness of vaccination. The impact of HSS was quantified via mixed-effects logistic regressions. RESULTS: The HSS intervention was associated with a significant increase in immunisation rates (OR between 1.22 for measles and 1.49 for DTP), which diminished over time. Outreach activities were associated with a doubling in immunisation rates, but their effect was smaller in the HSS catchment. Analysis of cohort data revealed that HSS was associated with higher vaccination coverage (OR between 1.18 per year of HSS for measles and 1.43 for BCG), a reduction in economic inequality, and a higher proportion of timely vaccinations. Yet, the lower contribution of outreach activities in the HSS catchment was associated with persistent inequalities in geographical coverage, which prevented achieving international coverage targets. CONCLUSION: Investment in stronger primary care systems can improve vaccination coverage, reduce inequalities and improve the timeliness of vaccination via increases in routine immunisations.


Asunto(s)
Población Rural , Cobertura de Vacunación , Niño , Humanos , Inmunización , Madagascar , Vacunación
3.
Glob Health Action ; 13(1): 1816044, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-33012269

RESUMEN

COVID-19 has wreaked havoc globally with particular concerns for sub-Saharan Africa (SSA), where models suggest that the majority of the population will become infected. Conventional wisdom suggests that the continent will bear a higher burden of COVID-19 for the same reasons it suffers from other infectious diseases: ecology, socio-economic conditions, lack of water and sanitation infrastructure, and weak health systems. However, so far SSA has reported lower incidence and fatalities compared to the predictions of standard models and the experience of other regions of the world. There are three leading explanations, each with different implications for the final epidemic burden: (1) low case detection, (2) differences in epidemiology (e.g. low R 0 ), and (3) policy interventions. The low number of cases have led some SSA governments to relaxing these policy interventions. Will this result in a resurgence of cases? To understand how to interpret the lower-than-expected COVID-19 case data in Madagascar, we use a simple age-structured model to explore each of these explanations and predict the epidemic impact associated with them. We show that the incidence of COVID-19 cases as of July 2020 can be explained by any combination of the late introduction of first imported cases, early implementation of non-pharmaceutical interventions (NPIs), and low case detection rates. We then re-evaluate these findings in the context of the COVID-19 epidemic in Madagascar through August 2020. This analysis reinforces that Madagascar, along with other countries in SSA, remains at risk of a growing health crisis. If NPIs remain enforced, up to 50,000 lives may be saved. Even with NPIs, without vaccines and new therapies, COVID-19 could infect up to 30% of the population, making it the largest public health threat in Madagascar for the coming year, hence the importance of clinical trials and continually improving access to healthcare.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Modelos Teóricos , Neumonía Viral/epidemiología , África del Sur del Sahara/epidemiología , COVID-19 , Humanos , Incidencia , Madagascar/epidemiología , Pandemias
4.
Front Microbiol ; 7: 813, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27303394

RESUMEN

Evidence currently suggests that as a species Mycobacterium tuberculosis exhibits very little genomic sequence diversity. Despite limited genetic variability, members of the M. tuberculosis complex (MTBC) have been shown to exhibit vast discrepancies in phenotypic presentation in terms of virulence, elicited immune response and transmissibility. Here, we used qualitative and quantitative mass spectrometry tools to investigate the proteomes of seven clinically-relevant mycobacterial strains-four M. tuberculosis strains, M. bovis, M. bovis BCG, and M. avium-that show varying degrees of pathogenicity and virulence, in an effort to rationalize the observed phenotypic differences. Following protein preparation, liquid chromatography mass spectrometry (LC MS/MS) and data capture were carried out using an LTQ Orbitrap Velos. Data analysis was carried out using a novel bioinformatics strategy, which yielded high protein coverage and was based on high confidence peptides. Through this approach, we directly identified a total of 3788 unique M. tuberculosis proteins out of a theoretical proteome of 4023 proteins and identified an average of 3290 unique proteins for each of the MTBC organisms (representing 82% of the theoretical proteomes), as well as 4250 unique M. avium proteins (80% of the theoretical proteome). Data analysis showed that all major classes of proteins are represented in every strain, but that there are significant quantitative differences between strains. Targeted selected reaction monitoring (SRM) assays were used to quantify the observed differential expression of a subset of 23 proteins identified by comparison to gene expression data as being of particular relevance to virulence. This analysis revealed differences in relative protein abundance between strains for proteins which may promote bacterial fitness in the more virulent W. Beijing strain. These differences may contribute to this strain's capacity for surviving within the host and resisting treatment, which has contributed to its rapid spread. Through this approach, we have begun to describe the proteomic portrait of a successful mycobacterial pathogen. Data are available via ProteomeXchange with identifier PXD004165.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...